Seguir
Victor Veitch
Victor Veitch
E-mail confirmado em uchicago.edu - Página inicial
Título
Citado por
Citado por
Ano
Contextuality supplies the ‘magic’for quantum computation
M Howard, J Wallman, V Veitch, J Emerson
Nature 510 (7505), 351-355, 2014
4992014
Negative quasi-probability as a resource for quantum computation
V Veitch, C Ferrie, D Gross, J Emerson
New Journal of Physics 14 (11), 113011, 2012
2742012
The resource theory of stabilizer quantum computation
V Veitch, SAH Mousavian, D Gottesman, J Emerson
New Journal of Physics 16 (1), 013009, 2014
2662014
Underspecification presents challenges for credibility in modern machine learning
A D'Amour, K Heller, D Moldovan, B Adlam, B Alipanahi, A Beutel, ...
arXiv preprint arXiv:2011.03395, 2020
2452020
Non-vacuous generalization bounds at the imagenet scale: a PAC-bayesian compression approach
W Zhou, V Veitch, M Austern, RP Adams, P Orbanz
arXiv preprint arXiv:1804.05862, 2018
122*2018
Adapting neural networks for the estimation of treatment effects
C Shi, D Blei, V Veitch
Advances in neural information processing systems 32, 2019
1142019
Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation
V Veitch, N Wiebe, C Ferrie, J Emerson
New Journal of Physics 15 (1), 013037, 2013
1042013
The class of random graphs arising from exchangeable random measures
V Veitch, DM Roy
arXiv preprint arXiv:1512.03099, 2015
972015
Adapting text embeddings for causal inference
V Veitch, D Sridhar, D Blei
Conference on Uncertainty in Artificial Intelligence, 919-928, 2020
472020
The holdout randomization test: Principled and easy black box feature selection
W Tansey, V Veitch, H Zhang, R Rabadan, DM Blei
arXiv e-prints, arXiv: 1811.00645, 2018
37*2018
Sampling and estimation for (sparse) exchangeable graphs
V Veitch, DM Roy
The Annals of Statistics 47 (6), 3274-3299, 2019
362019
Using embeddings to correct for unobserved confounding in networks
V Veitch, Y Wang, D Blei
Advances in Neural Information Processing Systems 32, 2019
34*2019
Causal inference in natural language processing: Estimation, prediction, interpretation and beyond
A Feder, KA Keith, E Manzoor, R Pryzant, D Sridhar, Z Wood-Doughty, ...
arXiv preprint arXiv:2109.00725, 2021
272021
Sampling perspectives on sparse exchangeable graphs
C Borgs, JT Chayes, H Cohn, V Veitch
The Annals of Probability 47 (5), 2754-2800, 2019
252019
The whole is greater than the sum of the parts: on the possibility of purely statistical interpretations of quantum theory
J Emerson, D Serbin, C Sutherland, V Veitch
arXiv preprint arXiv:1312.1345, 2013
252013
Counterfactual invariance to spurious correlations in text classification
V Veitch, A D'Amour, S Yadlowsky, J Eisenstein
Advances in Neural Information Processing Systems 34, 2021
18*2021
Sense and sensitivity analysis: Simple post-hoc analysis of bias due to unobserved confounding
V Veitch, A Zaveri
Advances in Neural Information Processing Systems 33, 10999-11009, 2020
182020
Causal effects of linguistic properties
R Pryzant, D Card, D Jurafsky, V Veitch, D Sridhar
arXiv preprint arXiv:2010.12919, 2020
152020
Empirical risk minimization and stochastic gradient descent for relational data
V Veitch, M Austern, W Zhou, DM Blei, P Orbanz
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
92019
Invariant representation learning for treatment effect estimation
C Shi, V Veitch, DM Blei
Uncertainty in Artificial Intelligence, 1546-1555, 2021
62021
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–20