Follow
Edwin V. Bonilla
Edwin V. Bonilla
Principal Research Scientist, CSIRO's Data61
Verified email at data61.csiro.au - Homepage
Title
Cited by
Cited by
Year
Multi-task Gaussian process prediction
EV Bonilla, C Williams, KM Chai
Advances in Neural Information Processing Systems (NeurIPS), 153-160, 2007
14842007
Using machine learning to focus iterative optimization
F Agakov, E Bonilla, J Cavazos, B Franke, G Fursin, MFP O'Boyle, ...
International Symposium on Code Generation and Optimization, 11 pp.-305, 2006
5322006
Rapidly selecting good compiler optimizations using performance counters
J Cavazos, G Fursin, F Agakov, E Bonilla, MFP O'Boyle, O Temam
International Symposium on Code Generation and Optimization, 185-197, 2007
3502007
Milepost gcc: Machine learning enabled self-tuning compiler
G Fursin, Y Kashnikov, AW Memon, Z Chamski, O Temam, M Namolaru, ...
International journal of parallel programming 39, 296-327, 2011
3332011
Improving Topic Coherence with Regularized Topic Models
D Newman, EV Bonilla, W Buntine
Advances in Neural Information Processing Systems (NeurIPS), 2011
2652011
Automatic feature generation for machine learning--based optimising compilation
H Leather, E Bonilla, M O'boyle
ACM Transactions on Architecture and Code Optimization 11 (1), 1-32, 2014
2202014
Random feature expansions for deep Gaussian processes
K Cutajar, EV Bonilla, P Michiardi, M Filippone
International Conference on Machine Learning (ICML), 884-893, 2017
1882017
MILEPOST GCC: machine learning based research compiler
G Fursin, C Miranda, O Temam, M Namolaru, E Yom-Tov, A Zaks, ...
GCC Summit, 2008
1702008
Kernel multi-task learning using task-specific features
EV Bonilla, FV Agakov, CKI Williams
International Conference on Artificial Intelligence and Statistics (AISTATS …, 2007
1472007
Collaborative Multi-output Gaussian Processes.
TV Nguyen, EV Bonilla
Uncertainty in Artificial Intelligence (UAI), 643-652, 2014
1232014
A predictive model for dynamic microarchitectural adaptivity control
C Dubach, TM Jones, EV Bonilla, MFP O'Boyle
2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, 485-496, 2010
1172010
Gaussian process preference elicitation
EV Bonilla, S Guo, S Sanner
Advances in Neural Information Processing Systems (NeurIPS), 262-270, 2010
113*2010
Automatic performance model construction for the fast software exploration of new hardware designs
J Cavazos, C Dubach, F Agakov, E Bonilla, MFP O'Boyle, G Fursin, ...
International conference on Compilers, architecture and synthesis for …, 2006
1002006
New objective functions for social collaborative filtering
J Noel, S Sanner, KN Tran, P Christen, L Xie, EV Bonilla, E Abbasnejad, ...
Proceedings of the 21st international conference on World Wide Web, 859-868, 2012
952012
Portable compiler optimisation across embedded programs and microarchitectures using machine learning
C Dubach, TM Jones, EV Bonilla, G Fursin, MFP O'Boyle
Proceedings of the 42nd Annual IEEE/ACM International Symposium on …, 2009
792009
Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings
P Elinas, EV Bonilla, L Tiao
Advances in Neural Information Processing Systems (NeurIPS), 2020
772020
Fast allocation of Gaussian process experts
T Nguyen, E Bonilla
International Conference on Machine Learning (ICML), 145-153, 2014
742014
AutoGP: Exploring the capabilities and limitations of Gaussian process models
K Krauth, EV Bonilla, K Cutajar, M Filippone
Uncertainty in Artificial Intelligence (UAI), 2017
672017
Scalable inference for Gaussian process models with black-box likelihoods
A Dezfouli, EV Bonilla
Advances in Neural Information Processing Systems (NeurIPS) 28, 2015
672015
Learning community-based preferences via dirichlet process mixtures of gaussian processes
E Abbasnejad, S Sanner, EV Bonilla, P Poupart
International joint conference on artificial intelligence, 2013
492013
The system can't perform the operation now. Try again later.
Articles 1–20