Rafael Gomes Mantovani
Rafael Gomes Mantovani
Federal Technology University - Paraná, campus of Apucarana
Verified email at utfpr.edu.br
Title
Cited by
Cited by
Year
OpenML benchmarking suites and the OpenML100
B Bischl, G Casalicchio, M Feurer, F Hutter, M Lang, RG Mantovani, ...
stat 1050, 11, 2017
55*2017
Effectiveness of random search in SVM hyper-parameter tuning
RG Mantovani, ALD Rossi, J Vanschoren, B Bischl, AC De Carvalho
2015 International Joint Conference on Neural Networks (IJCNN), 1-8, 2015
542015
Hyper-parameter tuning of a decision tree induction algorithm
RG Mantovani, T Horváth, R Cerri, J Vanschoren, AC de Carvalho
2016 5th Brazilian Conference on Intelligent Systems (BRACIS), 37-42, 2016
492016
To tune or not to tune: recommending when to adjust SVM hyper-parameters via meta-learning
RG Mantovani, ALD Rossi, J Vanschoren, B Bischl, AC Carvalho
2015 International Joint Conference on Neural Networks (IJCNN), 1-8, 2015
372015
Applying multi-label techniques in emotion identification of short texts
AMG Almeida, R Cerri, EC Paraiso, RG Mantovani, SB Junior
Neurocomputing 320, 35-46, 2018
292018
Storage time prediction of pork by Computational Intelligence
APAC Barbon, S Barbon Jr, RG Mantovani, EM Fuzyi, LM Peres, AM Bridi
Computers and Electronics in Agriculture 127, 368-375, 2016
272016
Pattern recognition of lower member skin ulcers in medical images with machine learning algorithms
JL Seixas, S Barbon, RG Mantovani
2015 IEEE 28th International Symposium on Computer-Based Medical Systems, 50-53, 2015
212015
Machine learning hyperparameter selection for contrast limited adaptive histogram equalization
GFC Campos, SM Mastelini, GJ Aguiar, RG Mantovani, LF de Melo, ...
EURASIP Journal on Image and Video Processing 2019 (1), 1-18, 2019
182019
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
RG Mantovani, ALD Rossi, E Alcobaca, J Vanschoren, AC de Carvalho
Information Sciences 501, 193-221, 2019
172019
A meta-learning approach for recommendation of image segmentation algorithms
GFC Campos, S Barbon, RG Mantovani
2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI …, 2016
172016
Meta-learning Recommendation of Default Hyper-parameter Values for SVMs in Classification Tasks.
RG Mantovani, ALD Rossi, J Vanschoren, AC de Carvalho
MetaSel@ PKDD/ECML, 80-92, 2015
122015
Machine learning applied to near-infrared spectra for chicken meat classification
S Barbon, APA Costa Barbon, RG Mantovani, DF Barbin
Journal of Spectroscopy 2018, 2018
112018
A meta-learning approach for selecting image segmentation algorithm
GJ Aguiar, RG Mantovani, SM Mastelini, AC de Carvalho, GFC Campos, ...
Pattern Recognition Letters 128, 480-487, 2019
102019
Effects of random sampling on svm hyper-parameter tuning
T Horváth, RG Mantovani, AC de Carvalho
International Conference on Intelligent Systems Design and Applications, 268-278, 2016
92016
An empirical study on hyperparameter tuning of decision trees
RG Mantovani, T Horváth, R Cerri, SB Junior, J Vanschoren, ...
arXiv preprint arXiv:1812.02207, 2018
72018
Multi-label feature selection techniques for hierarchical multi-label protein function prediction
R Cerri, RG Mantovani, MP Basgalupp, AC de Carvalho
2018 International Joint Conference on Neural Networks (IJCNN), 1-7, 2018
52018
Openml benchmarking suites. 2019
B Bischl, G Casalicchio, M Feurer, F Hutter, M Lang, RG Mantovani, ...
URL https://arxiv. org/abs/1708.03731, 0
5
Dimensionality reduction for the algorithm recommendation problem
E Alcobaça, RG Mantovani, ALD Rossi, AC De Carvalho
2018 7th Brazilian Conference on Intelligent Systems (BRACIS), 318-323, 2018
32018
Use of meta-learning for hyperparameter tuning of classification problems
R Mantovani
Ph. D. thesis, University of Sao Carlos, Brazil, 2018
32018
Decision trees for hierarchical classification of transposable elements
B Zamith Santos, R Gomes Mantovani, L Schietgat, C Vens, R Cerri
Proceedings of the 25th Belgian-Dutch Machine Learning Conference (Benelearn …, 2016
32016
The system can't perform the operation now. Try again later.
Articles 1–20