Seguir
Anton Raichuk
Anton Raichuk
E-mail confirmado em google.com
Título
Citado por
Citado por
Ano
Episodic curiosity through reachability
N Savinov, A Raichuk, R Marinier, D Vincent, M Pollefeys, T Lillicrap, ...
arXiv preprint arXiv:1810.02274, 2018
1802018
Google research football: A novel reinforcement learning environment
K Kurach, A Raichuk, P Stańczyk, M Zając, O Bachem, L Espeholt, ...
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 4501-4510, 2020
95*2020
What matters in on-policy reinforcement learning? a large-scale empirical study
M Andrychowicz, A Raichuk, P Stańczyk, M Orsini, S Girgin, R Marinier, ...
arXiv preprint arXiv:2006.05990, 2020
722020
What matters for on-policy deep actor-critic methods? a large-scale study
M Andrychowicz, A Raichuk, P Stańczyk, M Orsini, S Girgin, R Marinier, ...
International conference on learning representations, 2020
442020
Brax--A Differentiable Physics Engine for Large Scale Rigid Body Simulation
CD Freeman, E Frey, A Raichuk, S Girgin, I Mordatch, O Bachem
arXiv preprint arXiv:2106.13281, 2021
222021
Brax-a differentiable physics engine for large scale rigid body simulation, 2021
CD Freeman, E Frey, A Raichuk, S Girgin, I Mordatch, O Bachem
URL http://github. com/google/brax, 2021
142021
What matters for adversarial imitation learning?
M Orsini, A Raichuk, L Hussenot, D Vincent, R Dadashi, S Girgin, M Geist, ...
Advances in Neural Information Processing Systems 34, 14656-14668, 2021
122021
What matters in on-policy reinforcement learning
M Andrychowicz, A Raichuk, P Stanczyk, M Orsini, S Girgin, R Marinier, ...
A large-scale empirical study. CoRR, abs/2006.05990, 2020
92020
Hyperparameter selection for imitation learning
L Hussenot, M Andrychowicz, D Vincent, R Dadashi, A Raichuk, S Ramos, ...
International Conference on Machine Learning, 4511-4522, 2021
52021
Zaj ac
K Kurach, A Raichuk, P Stanczyk
M., Bachem, O., Espeholt, L., Riquelme, C., Vincent, D., Michalski, M …, 2019
52019
Braxlines: Fast and interactive toolkit for rl-driven behavior engineering beyond reward maximization
SS Gu, M Diaz, DC Freeman, H Furuta, SKS Ghasemipour, A Raichuk, ...
arXiv preprint arXiv:2110.04686, 2021
32021
Agent-centric representations for multi-agent reinforcement learning
W Shang, L Espeholt, A Raichuk, T Salimans
arXiv preprint arXiv:2104.09402, 2021
32021
Implicitly regularized rl with implicit q-values
N Vieillard, M Andrychowicz, A Raichuk, O Pietquin, M Geist
arXiv preprint arXiv:2108.07041, 2021
12021
Continuous Control with Demonstration-based Discretization
R Dadashi, L Hussenot, D Vincent, S Girgin, A Raichuk, M Geist, ...
2022
Continuous Control with Action Quantization from Demonstrations
R Dadashi, L Hussenot, D Vincent, S Girgin, A Raichuk, M Geist, ...
arXiv preprint arXiv:2110.10149, 2021
2021
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–15