Karl Tuyls
Karl Tuyls
Research Scientist, Google DeepMind and Professor of computer science, University of Liverpool
E-mail confirmado em google.com - Página inicial
Título
Citado por
Citado por
Ano
Value-decomposition networks for cooperative multi-agent learning
P Sunehag, G Lever, A Gruslys, WM Czarnecki, V Zambaldi, M Jaderberg, ...
arXiv preprint arXiv:1706.05296, 2017
4972017
Credit card fraud detection using Bayesian and neural networks
S Maes, K Tuyls, B Vanschoenwinkel, B Manderick
Proceedings of the 1st international naiso congress on neuro fuzzy …, 2002
4342002
A unified game-theoretic approach to multiagent reinforcement learning
M Lanctot, V Zambaldi, A Gruslys, A Lazaridou, K Tuyls, J Pérolat, D Silver, ...
arXiv preprint arXiv:1711.00832, 2017
3852017
Deep reinforcement learning with relational inductive biases
V Zambaldi, D Raposo, A Santoro, V Bapst, Y Li, I Babuschkin, K Tuyls, ...
International Conference on Learning Representations, 2018
285*2018
Evolutionary dynamics of multi-agent learning: A survey
D Bloembergen, K Tuyls, D Hennes, M Kaisers
Journal of Artificial Intelligence Research 53, 659-697, 2015
2182015
The mechanics of n-player differentiable games
D Balduzzi, S Racaniere, J Martens, J Foerster, K Tuyls, T Graepel
International Conference on Machine Learning, 354-363, 2018
2072018
Multiagent learning: Basics, challenges, and prospects
K Tuyls, G Weiss
Ai Magazine 33 (3), 41-41, 2012
1802012
Inference of concise DTDs from XML data
GJ Bex, F Neven, T Schwentick, K Tuyls
Proceedings of the 32nd international conference on Very large data bases …, 2006
1622006
Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone
K McGuire, G De Croon, C De Wagter, K Tuyls, H Kappen
IEEE Robotics and Automation Letters 2 (2), 1070-1076, 2017
1422017
What evolutionary game theory tells us about multiagent learning
K Tuyls, S Parsons
Artificial Intelligence 171 (7), 406-416, 2007
1422007
A selection-mutation model for q-learning in multi-agent systems
K Tuyls, K Verbeeck, T Lenaerts
Proceedings of the second international joint conference on Autonomous …, 2003
1362003
Lenient multi-agent deep reinforcement learning
G Palmer, K Tuyls, D Bloembergen, R Savani
arXiv preprint arXiv:1707.04402, 2017
1352017
An evolutionary dynamical analysis of multi-agent learning in iterated games
K Tuyls, PJT Hoen, B Vanschoenwinkel
Autonomous Agents and Multi-Agent Systems 12 (1), 115-153, 2006
1352006
Emergence of linguistic communication from referential games with symbolic and pixel input
A Lazaridou, KM Hermann, K Tuyls, S Clark
arXiv preprint arXiv:1804.03984, 2018
1342018
A multi-agent reinforcement learning model of common-pool resource appropriation
J Perolat, JZ Leibo, V Zambaldi, C Beattie, K Tuyls, T Graepel
arXiv preprint arXiv:1707.06600, 2017
1292017
Multi-robot collision avoidance with localization uncertainty.
D Hennes, D Claes, W Meeussen, K Tuyls
AAMAS, 147-154, 2012
1242012
Evolutionary game theory and multi-agent reinforcement learning
K Tuyls, A Nowé
The Knowledge Engineering Review 20 (1), 63-90, 2005
1182005
Emergent communication through negotiation
K Cao, A Lazaridou, M Lanctot, JZ Leibo, K Tuyls, S Clark
arXiv preprint arXiv:1804.03980, 2018
1112018
Inequity aversion improves cooperation in intertemporal social dilemmas
E Hughes, JZ Leibo, MG Phillips, K Tuyls, EA Duéñez-Guzmán, ...
arXiv preprint arXiv:1803.08884, 2018
1092018
Theoretical advantages of lenient learners: An evolutionary game theoretic perspective
L Panait, K Tuyls, S Luke
The Journal of Machine Learning Research 9, 423-457, 2008
1052008
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–20