Keiller Nogueira
Title
Cited by
Cited by
Year
Towards better exploiting convolutional neural networks for remote sensing scene classification
K Nogueira, OAB Penatti, JA Dos Santos
Pattern Recognition 61, 539-556, 2017
6592017
Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?
OAB Penatti, K Nogueira, JA Dos Santos
Proceedings of the IEEE conference on computer vision and pattern …, 2015
6102015
Improving spatial feature representation from aerial scenes by using convolutional networks
K Nogueira, WO Miranda, JA Dos Santos
2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, 289-296, 2015
582015
Dynamic Multicontext Segmentation of Remote Sensing Images Based on Convolutional Networks
K Nogueira, M Dalla Mura, J Chanussot, WR Schwartz, JA Dos Santos
IEEE Transactions on Geoscience and Remote Sensing, 2019
522019
Exploiting ConvNet diversity for flooding identification
K Nogueira, SG Fadel, ÍC Dourado, RO Werneck, JAV Muñoz, ...
IEEE Geoscience and Remote Sensing Letters 15 (9), 1446-1450, 2018
382018
Learning to semantically segment high-resolution remote sensing images
K Nogueira, M Dalla Mura, J Chanussot, WR Schwartz, JA dos Santos
2016 23rd International Conference on Pattern Recognition (ICPR), 3566-3571, 2016
262016
Data-Driven Flood Detection using Neural Networks
K Nogueira, SG Fadel, ÍC Dourado, RO Werneck, JAV Muñoz, ...
MediaEval, 2017
172017
Learning deep features on multiple scales for coffee crop recognition
R Baeta, K Nogueira, D Menotti, JA dos Santos
2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI …, 2017
162017
Towards vegetation species discrimination by using data-driven descriptors
K Nogueira, JA Dos Santos, T Fornazari, TSF Silva, LP Morellato, ...
2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS), 1-6, 2016
122016
Coffee crop recognition using multi-scale convolutional neural networks
K Nogueira, WR Schwartz, JA dos Santos
Iberoamerican Congress on Pattern Recognition, 67-74, 2015
122015
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of convnets
K Nogueira, JA Dos Santos, L Cancian, BD Borges, TSF Silva, ...
2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2017
112017
Pointwise and pairwise clothing annotation: combining features from social media
K Nogueira, AA Veloso, JA Dos Santos
Multimedia Tools and Applications 75 (7), 4083-4113, 2016
102016
Deep contextual description of superpixels for aerial urban scenes classification
TMHC Santana, K Nogueira, AMC Machado, JA dos Santos
2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2017
92017
An introduction to deep morphological networks
K Nogueira, J Chanussot, MD Mura, JA Santos
arXiv preprint arXiv:1906.01751, 2019
72019
Spatio-Temporal Vegetation Pixel Classification by Using Convolutional Networks
K Nogueira, JA dos Santos, N Menini, TSF Silva, LPC Morellato, ...
IEEE Geoscience and Remote Sensing Letters 16 (10), 1665-1669, 2019
62019
RECOD@ Placing Task of MediaEval 2015.
LT Li, JAV Muñoz, J Almeida, RT Calumby, OAB Penatti, ÍC Dourado, ...
MediaEval, 2015
62015
Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery
LP Osco, K Nogueira, APM Ramos, MMF Pinheiro, DEG Furuya, ...
Precision Agriculture, 1-18, 2021
42021
Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images
P Zamboni, JM Junior, JA Silva, GT Miyoshi, ET Matsubara, K Nogueira, ...
Remote Sensing 13 (13), 2482, 2021
42021
Towards open-set semantic segmentation of aerial images
CCV da Silva, K Nogueira, HN Oliveira, JA dos Santos
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), 16-21, 2020
42020
RECOD@ Placing Task of MediaEval 2016: A Ranking Fusion Approach for Geographic-Location Prediction of Multimedia Objects.
JAV Muñoz, LT Li, ÍC Dourado, K Nogueira, SG Fadel, OAB Penatti, ...
MediaEval, 2016
42016
The system can't perform the operation now. Try again later.
Articles 1–20