Andrea Tirinzoni
Andrea Tirinzoni
Inria Lille
E-mail confirmado em inria.fr - Página inicial
Título
Citado por
Citado por
Ano
Importance Weighted Transfer of Samples in Reinforcement Learning
A Tirinzoni, A Sessa, M Pirotta, M Restelli
International Conference on Machine Learning, 4936-4945, 2018
282018
Transfer of samples in policy search via multiple importance sampling
A Tirinzoni, M Salvini, M Restelli
International Conference on Machine Learning, 6264-6274, 2019
202019
Feature selection via mutual information: new theoretical insights
M Beraha, AM Metelli, M Papini, A Tirinzoni, M Restelli
2019 International Joint Conference on Neural Networks (IJCNN), 1-9, 2019
192019
An asymptotically optimal primal-dual incremental algorithm for contextual linear bandits
A Tirinzoni, M Pirotta, M Restelli, A Lazaric
Advances in Neural Information Processing Systems 33, 2021
182021
Policy-conditioned uncertainty sets for robust Markov decision processes
A Tirinzoni, X Chen, M Petrik, B Ziebart
Advances in Neural Information Processing Systems 31, 2018
142018
Transfer of Value Functions via Variational Methods.
A Tirinzoni, R Rodríguez-Sánchez, M Restelli
NeurIPS, 6182-6192, 2018
132018
Combining reinforcement learning with rule-based controllers for transparent and general decision-making in autonomous driving
A Likmeta, AM Metelli, A Tirinzoni, R Giol, M Restelli, D Romano
Robotics and Autonomous Systems 131, 103568, 2020
122020
A novel confidence-based algorithm for structured bandits
A Tirinzoni, A Lazaric, M Restelli
International Conference on Artificial Intelligence and Statistics, 3175-3185, 2020
122020
Gradient-aware model-based policy search
P D'Oro, AM Metelli, A Tirinzoni, M Papini, M Restelli
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 3801-3808, 2020
102020
Sequential transfer in reinforcement learning with a generative model
A Tirinzoni, R Poiani, M Restelli
International Conference on Machine Learning, 9481-9492, 2020
92020
Truly batch model-free inverse reinforcement learning about multiple intentions
G Ramponi, A Likmeta, AM Metelli, A Tirinzoni, M Restelli
International Conference on Artificial Intelligence and Statistics, 2359-2369, 2020
92020
Leveraging good representations in linear contextual bandits
M Papini, A Tirinzoni, M Restelli, A Lazaric, M Pirotta
arXiv preprint arXiv:2104.03781, 2021
82021
A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs
A Tirinzoni, M Pirotta, A Lazaric
arXiv preprint arXiv:2106.13013, 2021
22021
Dealing with multiple experts and non-stationarity in inverse reinforcement learning: an application to real-life problems
A Likmeta, AM Metelli, G Ramponi, A Tirinzoni, M Giuliani, M Restelli
Machine Learning, 1-36, 2021
22021
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification
C Réda, A Tirinzoni, R Degenne
Advances in Neural Information Processing Systems 34, 2021
2021
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
M Papini, A Tirinzoni, A Pacchiano, M Restelli, A Lazaric, M Pirotta
Advances in Neural Information Processing Systems 34, 2021
2021
Meta-Reinforcement Learning by Tracking Task Non-stationarity
R Poiani, A Tirinzoni, M Restelli
Proceedings of the Thirtieth International Joint Conference on Artificial …, 2021
2021
Exploiting structure for transfer in reinforcement learning
A Tirinzoni
Italy, 2021
2021
Adversarial imitation learning under covariate shift
A TIRINZONI
Italy, 2017
2017
Adversarial Inverse Reinforcement Learning with Changing Dynamics
A Tirinzoni
University of Illinois at Chicago, 2017
2017
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–20