A comparative analysis of gradient boosting algorithms C Bentéjac, A Csörgő, G Martínez-Muñoz Artificial Intelligence Review 54, 1937-1967, 2021 | 1459 | 2021 |
An analysis of ensemble pruning techniques based on ordered aggregation G Martinez-Munoz, D Hernández-Lobato, A Suárez IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (2), 245-259, 2008 | 393 | 2008 |
Pruning in ordered bagging ensembles G Martínez-Muñoz, A Suárez Proceedings of the 23rd international conference on Machine learning, 609-616, 2006 | 229 | 2006 |
Aggregation ordering in bagging G Martınez-Munoz, A Suárez Proc. of the IASTED International Conference on Artificial Intelligence and …, 2004 | 190 | 2004 |
Out-of-bag estimation of the optimal sample size in bagging G Martínez-Muñoz, A Suárez Pattern Recognition 43 (1), 143-152, 2010 | 153 | 2010 |
Using boosting to prune bagging ensembles G Martinez-Munoz, A Suárez Pattern Recognition Letters 28 (1), 156-165, 2007 | 153 | 2007 |
Switching class labels to generate classification ensembles G Martínez-Muñoz, A Suárez Pattern Recognition 38 (10), 1483-1494, 2005 | 121 | 2005 |
How large should ensembles of classifiers be? D Hernández-Lobato, G Martínez-Muñoz, A Suárez Pattern Recognition 46 (5), 1323-1336, 2013 | 96 | 2013 |
Automated processing and identification of benthic invertebrate samples DA Lytle, G Martínez-Muñoz, W Zhang, N Larios, L Shapiro, R Paasch, ... Journal of the North American Benthological Society 29 (3), 867-874, 2010 | 96 | 2010 |
Dictionary-free categorization of very similar objects via stacked evidence trees G Martinez-Munoz, N Larios, E Mortensen, W Zhang, A Yamamuro, ... 2009 IEEE Conference on Computer Vision and Pattern Recognition, 549-556, 2009 | 81 | 2009 |
Statistical instance-based pruning in ensembles of independent classifiers D Hernández-Lobato, G Martinez-Munoz, A Suárez IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (2), 364-369, 2008 | 74 | 2008 |
A programming experience of high school students in a virtual world platform M Rico, G Martínez-Muñoz, X Alaman, D Camacho, E Pulido International Journal of Engineering Education 27 (1), 52, 2011 | 72 | 2011 |
Haar random forest features and SVM spatial matching kernel for stonefly species identification N Larios, B Soran, LG Shapiro, G Martìnez-Muñoz, J Lin, TG Dietterich 2010 20th International Conference on Pattern Recognition, 2624-2627, 2010 | 65 | 2010 |
Vote-boosting ensembles M Sabzevari, G Martínez-Muñoz, A Suárez Pattern Recognition 83, 119-133, 2018 | 57 | 2018 |
Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles D Hernández-Lobato, G Martínez-Muñoz, A Suárez Neurocomputing 74 (12-13), 2250-2264, 2011 | 55 | 2011 |
Using a SPOC to flip the classroom G Martínez-Muñoz, E Pulido 2015 IEEE global Engineering education conference (EDUCON), 431-436, 2015 | 48 | 2015 |
A two-stage ensemble method for the detection of class-label noise M Sabzevari, G Martínez-Muñoz, A Suárez Neurocomputing 275, 2374-2383, 2018 | 45 | 2018 |
Pruning in ordered regression bagging ensembles D Hernández-Lobato, G Martínez-Muñoz, A Suárez The 2006 IEEE International Joint Conference on Neural Network Proceedings …, 2006 | 45 | 2006 |
Class-switching neural network ensembles G Martínez-Muñoz, A Sánchez-Martínez, D Hernández-Lobato, A Suárez Neurocomputing 71 (13-15), 2521-2528, 2008 | 34 | 2008 |
A machine learning model to assess the ecosystem response to water policy measures in the Tagus River Basin (Spain) C Valerio, L De Stefano, G Martínez-Muñoz, A Garrido Science of the Total Environment 750, 141252, 2021 | 32 | 2021 |