Nathalie Peyrard
Nathalie Peyrard
E-mail confirmado em - Página inicial
Citado por
Citado por
EM procedures using mean field-like approximations for Markov model-based image segmentation
G Celeux, F Forbes, N Peyrard
Pattern recognition 36 (1), 131-144, 2003
Hidden Markov random field model selection criteria based on mean field-like approximations
F Forbes, N Peyrard
IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (9), 1089-1101, 2003
Learning ecological networks from next-generation sequencing data
C Vacher, A Tamaddoni-Nezhad, S Kamenova, N Peyrard, Y Moalic, ...
Advances in ecological research 54, 1-39, 2016
A framework and a mean-field algorithm for the local control of spatial processes
R Sabbadin, N Peyrard, N Forsell
International Journal of Approximate Reasoning 53 (1), 66-86, 2012
Motion-based selection of relevant video segments for video summarization
N Peyrard, P Bouthemy
Multimedia Tools and Applications 26 (3), 259-276, 2005
Modelling interaction networks for enhanced ecosystem services in agroecosystems
P Tixier, N Peyrard, JN Aubertot, S Gaba, J Radoszycki, G Caron-Lormier, ...
Advances in Ecological Research 49, 437-480, 2013
Classification method for disease risk mapping based on discrete hidden Markov random fields
M Charras-Garrido, D Abrial, JD Goër, S Dachian, N Peyrard
Biostatistics 13 (2), 241-255, 2012
Model-based adaptive spatial sampling for occurrence map construction
N Peyrard, R Sabbadin, D Spring, B Brook, R Mac Nally
Statistics and Computing 23 (1), 29-42, 2013
Mean field approximation of the policy iteration algorithm for graph-based Markov decision processes
N Peyrard, R Sabbadin
Proceedings of the 2006 conference on ECAI 2006: 17th European Conference on …, 2006
Explorer un jeu de données sur grille par tests de permutation
N Peyrard, A Calonnec, F Bonnot, J Chadœuf
Revue de Statistique Appliquée 53 (1), 59-78, 2005
Model-based region-of-interest selection in dynamic breast MRI
F Forbes, N Peyrard, C Fraley, D Georgian-Smith, DM Goldhaber, ...
Journal of Computer Assisted Tomography 30 (4), 675-687, 2006
There's no harm in having too much: A comprehensive toolbox of methods in trophic ecology
N Majdi, N Hette-Tronquart, E Auclair, A Bec, T Chouvelon, B Cognie, ...
Food webs 17, e00100, 2018
Dynamics of weeds in the soil seed bank: a hidden Markov model to estimate life history traits from standing plant time series
B Borgy, X Reboud, N Peyrard, R Sabbadin, S Gaba
PloS one 10 (10), e0139278, 2015
Approximations de type champ moyen des modèles de champ de Markov pour la segmentation de données spatiales
N Peyrard
Université Joseph Fourier (Grenoble), 2001
Long-range correlations improve understanding of the influence of network structure on contact dynamics
N Peyrard, U Dieckmann, A Franc
Theoretical population biology 73 (3), 383-394, 2008
Reinforcement learning-based design of sampling policies under cost constraints in Markov random fields: Application to weed map reconstruction
M Bonneau, S Gaba, N Peyrard, R Sabbadin
Computational Statistics & Data Analysis 72, 30-44, 2014
Investigating disease spread between two assessment dates with permutation tests on a lattice
G Thébaud, N Peyrard, S Dallot, A Calonnec, G Labonne
Phytopathology 95 (12), 1453-1461, 2005
EM-based image segmentation using Potts models with external field
G Celeux, F Forbes, N Peyrard
INRIA, 2002
Quantifying the impact of uncertainty on threat management for biodiversity
S Nicol, J Brazill-Boast, E Gorrod, A McSorley, N Peyrard, I Chadès
Nature communications 10 (1), 1-14, 2019
Content-Based Video Segmentation using Statistical Motion Models.
N Peyrard, P Bouthemy
BMVC, 1-10, 2002
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–20